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Transferable Knowledge-Based Multi-Granularity
Fusion Network for Weakly Supervised Temporal
Action Detection

Haisheng Su™, Xu Zhao

Abstract—Despite remarkable progress, temporal action
detection is still limited for real application due to the great
amount of manual annotations. This issue motivates interest in
addressing this task under weak supervision, namely, locating the
action instances using only video-level class labels. Many current
works on this task are mainly based on the Class Activation
Sequence (CAS), which is generated by the video classification
network to describe the probability of each snippet being in a
specific action class of the video. However, the CAS generated by a
simple classification network can only focus on local discriminative
parts instead of locating the entire interval of target actions. In
this paper, we present a novel framework to handle this issue.
Specifically, we propose to utilize convolutional kernels with
varied dilation rates to enlarge the receptive fields, which can
transfer the discriminative information to the surrounding
non-discriminative regions. Then, we design a cascaded module
with the proposed Online Adversarial Erasing (OAE) mechanism
to further mine more relevant regions of target actions by feeding
the erased-feature maps of discovered regions back into the system.
In addition, inspired by the transfer learning method, we adopt an
additional module to transfer the knowledge from trimmed videos
to untrimmed videos to promote the classification performance
on untrimmed videos. Finally, we employ a boundary regression
module embedded with Outer-Inner-Contrastive (OIC) loss to
automatically predict the boundaries based on the enhanced CAS.
Extensive experiments are conducted on two challenging datasets,
THUMOS14 and ActivityNet-1.3, and the experimental results
clearly demonstrate the superiority of our unified framework.

Index Terms—Boundary regression, cascaded dilated
classification block, class activation sequence, knowledge transfer,
temporal action detection, weak supervision.
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1. INTRODUCTION

ITH the increasing development of computer vision
W and great amount of media resources, intelligent video
content analysis has attracted much attention from many re-
searchers in recent years. Videos in realistic life are usually long
and untrimmed and may contain multiple action instances with
arbitrary durations. Thus, there is an important yet challenging
task for video analysis: temporal action detection, which requires
one to accurately classify the untrimmed videos into specific
categories and precisely locate the temporal boundaries of ac-
tion instances. Although substantial progress has been achieved
in this task [1]-[8], it remains limited for industrial applications
due to the huge amount of temporal annotations used for training
such a deep-learning-based model in a fully supervised manner,
which are labor intensive to annotate especially for a large-scale
dataset. In contrast, weak labels such as video-level labels, are
much easier to obtain, so many current studies attempt to handle
this problem under weak supervision.

Analogous to Weakly Supervised Object Detection (WSOD)
in images, Weakly Supervised Temporal Action Detection
(WSTAD) can be considered a temporal version of WSOD for lo-
cating action instances using only video-level class labels. How-
ever, WSTAD is much more challenging than WSOD because of
the larger video content variation and uncertain temporal length
of action instances. A prevalent practice of WSTAD adopts the
idea [9] to generate a 1-D Class Activation Sequence (CAS) to
highlight the discriminative regions that contribute most to the
video classification results, which was originally used for lo-
cating object in images. Nevertheless, a high-quality CAS for
temporally locating the action boundaries should possess two
properties: (1) the CAS can completely cover the temporal in-
terval of target actions; (2) the CAS can densely locate the action
instances with fewer missing detections.

To generate a high-quality CAS, many recent methods adopt
the “localization by classification” framework with different im-
provement strategies. Singh et al. [10] present a data augmen-
tation method by randomly hiding regions during the training
phase to force the classification network to look for other dis-
criminative areas. Wei et al. [11] employ the adversarial erasing
method to discover more relevant regions by iteratively train-
ing the classifiers with discriminative region erasing of differ-
ent degrees. In addition, Nguyen et al. [12] introduce the at-
tention mechanism to distinguish between the action and the
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background. However, these works on achieving a better-quality
CAS may have some drawbacks: (1) without effective guidance,
the random hiding strategy only makes sense in images, not in
videos; (2) training of a classification network with iterative re-
gion erasing is somewhat impractical and inefficient; and (3) the
CAS fails to densely highlight the action instances in the video,
causing many missing detections.

To address these issues and effectively locate the action
instances under weak supervision, we propose the Multi-
Granularity Fusion Network (MGFN), which first adopts a cas-
caded dilated classification block to enhance the quality of the
CAS; then, it employs a boundary regression module to di-
rectly predict the temporal boundaries of action instances based
on the CAS. To generate a high-quality CAS, our cascaded
dilated classification block utilizes two main sub-modules to
achieve this goal. Specifically, the multi-dilated convolution
module augments the simple classification network with mul-
tiple convolutional kernels of different dilation rates to transfer
the discriminative information of initial seeds to the surround-
ing non-discriminative regions, which expands the visible areas
of the classification network. Then, the cascaded classification
module adapts two classifiers with identical architecture to fur-
ther discover other potential action regions using an Online Ad-
versarial Erasing (OAE) mechanism that do not appear in the
initial localization sequence. With this mechanism, the feature
maps of discriminative regions discovered in the first stage are
dynamically erased from the video sequence, which is subse-
quently fed into the second-stage classifier for further mining.
Unlike previous methods, our approach is more efficient and in-
tuitive. To further improve the CAS quality, we incorporate the
transfer learning idea and learn transferable knowledge between
trimmed videos and untrimmed videos to promote the classifi-
cation performance on untrimmed videos. Finally, instead of
performing temporal action detection by directly thresholding
the CAS, which may not be robust to noises in the CAS, we
adopt a boundary regression module to predict the boundaries.
For the segment-level supervision used for boundary regression,
the Outer-Inner-Contrastive (OIC) loss is employed. The entire
framework is optimized in an end-to-end fashion.

It is non-trivial to effectively and efficiently enhance the qual-
ity of the CAS since the CAS generated by the simple classi-
fication network can only focus on local discriminative parts,
making it inferior and not qualified for the temporal action de-
tection task. Hence, to achieve a good performance on this task,
a high-quality CAS is a prerequisite. For the sake of end-to-end
optimization, our OAE mechanism is time efficient and only
needs to train a model for the entire region mining. Therefore,
with the integrated training process, the augmented classifica-
tion network based on transferable knowledge and the boundary
regression module can collaborate with each other to achieve a
better performance.

The main contributions of our work are four-fold:

1) To the best of our knowledge, we are the first to
incorporate high-quality CAS generation and boundary
regression into a unified framework for weakly supervised
temporal action detection, which can coarsely locate the
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complete regions of actions in the videos and finely
predict the temporal boundaries through regression.

2) We introduce two effective yet efficient modules to en-
hance the quality of the CAS, where the multi-dilated con-
volution module is used to expand the local discriminative
regions, while the cascaded classification module is used
to further locate other potential action instances.

3) A knowledge transfer module is introduced to learn
transferable knowledge between untrimmed videos and
trimmed videos to promote the classification performance
on untrimmed videos.

4) Extensive experiments demonstrate that our approach
achieves state-of-the-art performance on both the THU-
MOS14 and ActivityNet-1.3 datasets.

The below content is organized as follows. Section II sum-
marizes the related work on action recognition, weakly super-
vised object detection and weakly supervised temporal action
detection. Section III explains our proposed method in detail.
Section IV presents the related experiments results. Section V
concludes our work.

II. RELATED WORK
A. Action Recognition

Action recognition is an essential branch of video content
analysis, which aims to classify manually trimmed videos into
specific categories and has been extensively explored in re-
cent years [13]-[16]. Earlier methods such as improved Dense
Trajectory (iDT) [17], [18], which mainly adopt the extracted
hand-crafted features, with the trajectories including HOG, HOF
and MBH, have won a leading place. With the rapid development
of deep learning, tremendous progress [19]-[22] has been made
in this field. Typically, a two-stream network [19], [20], [21] is
utilized to learn both appearance feature and motion information
through two branches, which are based on the RGB frame and
stacked optical flow field, respectively. The C3D network [22]
directly captures the spatial and temporal information from raw
videos using a series of 3D convolutional kernels. These ac-
tion recognition networks are usually adopted to extract visual
features of long and untrimmed videos at the snippet level.

B. Weakly Supervised Object Detection

Weakly supervised object detection aims to perform object
detection using only image-level labels. Bottom-up [23]-[25]
and top-down [9]-[11], [26], [27] mechanisms are two main
streams in current works. In the bottom-up approaches, can-
didate proposals are first extracted using selective search [28]
or edge boxes [29], which are subsequently fed into the deep
convolutional neural networks for classification, and the scores
from all proposals are merged together to match the image-level
labels.

In the top-down approaches, Zhou et al. [9] and Zhang
et al. [26] first explore the relationship between the image clas-
sification results and the neural responses of image regions, and
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they subsequently locate the areas of high activations as detec-
tion results. Meanwhile, Zhou et al. validate the localization
ability of a Global Average Pooling (GAP) layer in image clas-
sification networks. Singh et al. [10] propose to improve the
quality of Class Activation Mapping (CAM) by randomly hid-
ing some patches in images during the training phase so that
the classification network is forced to look for other discrimina-
tive regions. However, this data augmentation strategy without
effective guidance is blind and inefficient. Wei et al. [11] intro-
duce the Adversarial Erasing (AE) idea, which repeatedly trains
the classification networks with the discriminative regions iter-
atively erased. However, this idea requires the networks to be
trained several times, which is time consuming and impractical.
In our work, we propose the Online Adversarial Erasing (OAE)
method, which combines two classifiers of the same structure
in a cascaded manner, and the video features of discriminative
regions discovered in the first classifier are dynamically and
automatically erased from the video sequence for the second
classifier. In addition, Wei et al. [30] utilize dilated convolu-
tion to transfer the surrounding discriminative information to
non-discriminative object regions in images, thus promoting the
emergence of these regions in the localization maps to be more
integral, but they still neglect some missing regions of interest
that do not appear in the initial localization sequence. We ex-
pand this idea to the temporal field and equip the two-stage video
classifiers with 1-D dilated convolutional kernels of varied di-
lation rates. Hence, more discriminative regions can be mined,
and a high-quality dense localization map can be generated in
an end-to-end framework.

C. Weakly Supervised Temporal Action Detection

As acounterpart of weakly supervised image object detection,
the goal of weakly supervised temporal action detection is to lo-
cate action instances in untrimmed videos including temporal
boundaries and action categories by relying only on video-level
class labels. Similar to the idea in [23], Wang et al. [31] first
generate temporal action proposals with the priors of an action
shot and subsequently adopt a classification module and a selec-
tion module to perform action classification and important seg-
ment selection. However, the use of the softmax function across
proposals prevents this approach from distinguishing multiple
action instances in the same video. Singh et al. [10] also im-
plement this idea on this task, but it makes little sense due to
the complexity and varied lengths of videos. Sujoy et al. [32]
propose a co-activity loss to train a weakly supervised network.
All the localization parts of these methods are based on thresh-
olding on the final Class Activation Sequence (CAS), which
causes inaccurate boundaries of detections. Instead of apply-
ing a simple threshold on the Class Activation Sequence (CAS)
to directly perform action localization, Shou et al. [33] propose
the Outer-Inner-Contrastive (OIC) loss to provide segment-level
supervision for training a boundary regressor via the anchor
mechanism, which is intuitive and effective. However, AutoLoc
directly adopts a pretrained video classifier to generate the CAS
for boundary prediction, and the CAS quality is inferior with-
out improvement. In our work, we incorporate a high-quality
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CAS generation and boundary prediction process into a unified
network for collaborative optimization.

III. OUR APPROACH
A. Problem Definition

We denote an untrimmed video as X, = {xt}i“’zl, where [, is
the number of frames, and x; is the ¢-th frame in X,,. Each video
X, is annotated with a set of temporal action instances ®, =
{bn = (t5,5,0n) )", where N, is the number of temporal
action instances in X, and ¢7, t%, and ¢,, are the starting time,
ending time and category of instance ¢,,, respectively, with ¢,, €
{1,..., K}, where K is the number of action categories. During
the training phase, only the video-level action label set ¥, =
{npn}ﬁ[;l is given; during the test phase, ®, must be predicted.

B. Video Feature Encoding

To apply our algorithm, first, the feature representations must
be extracted to describe the visual content of the input video in
our work. In this paper, the prevalent pretrained architectures,
namely, UntrimmedNet [31], is employed for feature extraction
since this type of architecture using multiple two-stream net-
works has shown great performance and its use has become a
prevalent practice in action recognition and temporal action lo-
calization tasks. A two-stream network contains two branches:
the spatial network operates on a single RGB frame to capture
the appearance feature, and the temporal network handles the
stacked optical flow field to capture motion information.

Given a video containing [,, frames, the video unit is used as
the basic processing unit in our framework for computational
efficiency. Hence, the video is divided into [, /n, consecutive
units without overlap, where n,, is the frame number of a unit.
Then, we compose a unit sequence U = {u; }2“21 from video
X, where [, is the number of units. A video unit can be repre-
sented as u; = {xt}fj}:’“, where f, is the starting frame, and
fs + ny is the ending frame. Each unit is fed into the pretrained
visual encoder to extract the representation. Concretely, the cen-
ter RGB frame inside a unit is processed by the spatial network,
and the stacked optical flow derived around the center frame is
processed by the temporal network; then, we concatenate output
scores of video feature encoders in the fc-action layer to form
the feature vector f,,;, = {fs ., fr ., }, wherefs ,, and fr , , are
the output scores of the spatial and temporal networks, respec-
tively, with length G. Finally, the unit-level feature sequence
F = {f,, }é“':l is used as the input of our MGFN.

C. Multi-Granularity Fusion Network

We propose anovel architecture to effectively detect the action
instances with entire temporal regions and accurate boundaries
under weak supervision. As shown in Fig. 1, we design a cas-
caded dilated classification block to mine more relevant regions
of target actions by implementing convolutional kernels of var-
ied dilation rates and cascaded mechanism, which enhances the
quality of the Class Activation Sequence (CAS). Instead of lo-
cating temporal action instances by directly applying a simple
thresholding method, which is not robust to the noise of the CAS,
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The framework of our proposed method. (a) A two-stream network is used to encode video features at the snippet level for our algorithm to perform

action recognition and temporal boundary prediction under weak supervision. (b) Architecture of the Multi-Granularity Fusion Network: (i) the cascaded dilated
classification block handles the extracted visual features as input for video classification by adopting the multi-dilated convolution module and cascaded classification
module to discover entire class-specific temporal regions; (ii) the boundary regression module handles the input features to directly predict the boundary, which is
embedded with the Outer-Inner-Contrastive loss to optimize the boundary regressor based on the generated CAS. (c) Finally, we transfer knowledge from trimmed
videos to untrimmed videos to promote the classification performance on untrimmed videos and further enhance the quality of the Class Activation Sequence

(CAS).

we adopt a boundary regression module to automatically regress
to the accurate boundaries using the Outer-Inner-Contrastive
(OIC) loss. In addition, since the classification performance of
a pretrained video classifier is bound to decrease on untrimmed
videos due to the existence of background noise, we introduce
the transfer learning mechanism and learn transferable knowl-
edge between trimmed videos and untrimmed videos to promote
the performance of the classification network.

Network Architecture: The architecture of our MGFN is
illustrated in Fig. 1, which mainly contains two parts: the cas-
caded dilated classification block and boundary regressor. As
shown in Fig. 2, the cascaded dilated classification block in-
cludes two sub-modules: the multi-dilated convolution module
and cascaded classification module. The multi-dilated convo-
lution module is designed to augment the simple classification
network by gradually enlarging the receptive field of kernels
with multi-dilated convolution branches, which can effectively
incorporate the surrounding context and transfer the semantic
information from discriminative regions to non-discriminative
regions to expand the highlighted areas related to the actions.
Then, the cascaded classification module is a two-stage model
that combines the two multi-dilated convolution modules of the
same structure with an online adversarial erasing method to dis-
cover more relevant regions of target actions and generate a
CAS of high quality. Based on the enhanced CAS, we adopt
a boundary regression module to directly predict the segment
boundary via the anchor mechanism; then, we inflate the inner
segment boundary to obtain the outer segment boundary and

erase
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NN B [ - R .
. © ! d=r, :GM’E EE::
I EE® = "B
b0 i i =rs 1 ' 2=
PP == PP

Fig.2.  Architecture of the cascaded dilated classification block. The extracted
unit-level video features are concurrently fed into the two-stage classifiers for
video classification. For each stage, a standard classification network equipped
with multiple dilated convolutional branches of varied dilation rates is used to
generate a dense localization sequence. Then, the two-stage classifiers are com-
bined using an online adversarial erasing mechanism, where the video features
of the discriminative regions highlighted in the first-stage localization sequence
are dynamically erased from the video sequence for the second-stage classifier
to prompt the second classifier to leverage other related regions of target actions.
Finally, the localization sequences generated in the two stages are fused to obtain
a better quality.

optimize the regressor with the OIC loss to provide segment-
level supervision.

Multi-Dilated Convolution Module: The goal of this mod-
ule is to augment the simple classification network with dilated
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convolution. Since the Class Activation Sequence (CAS) gener-
ated by a simple classification network can only highlight dis-
criminative regions of target actions, which is not qualified for
the temporal action detection task, we introduce the dilated con-
volution, which is promising for incorporating the surrounding
context. By enlarging the receptive field of convolutional kernels
with varied dilation rates, the semantic information for support-
ing the classification result can be transferred from the initially
discriminative regions to other surrounding regions, thus en-
hancing their discriminativeness. Fig. 4 illustrates how the di-
lation step enables the information to be transferred with the
temporal dimension.

Specifically, first, we adopt two temporal convolutional lay-
ers, which serve as the base net to handle the temporal informa-
tion of the input video feature sequence; then, multi-dilated con-
volutional branches with varied dilation rates (i.e., d = r;,7 =
1,..., k)are appended to the base net to discover action-relevant
temporal regions perceived by varied receptive fields. After the
Global Average Pooling (GAP) layer, the pooled representa-
tions are further passed through a fully connected layer for
classification. Then, we optimize the augmented classification
network with the sigmoid cross-entropy loss and produce the
class-specific localization sequence for each branch. Finally, we
obtain the dense Class Activation Sequence (CAS) by fusing the
localization sequences from multiple branches.

Specifically, our dilated convolution module mainly includes
two types of operation. 1) Standard convolutional kernels with
dilation rate d = 1 are employed to generate the original lo-
calization sequence H(, where discriminate regions are effec-
tively highlighted despite some missing true positive regions. 2)
Convolutional kernels with varied dilation rates are employed
to expand the discriminative information to surrounding areas.
However, we observe that when the receptive field of kernels is
set too large, this will also introduce some true negative tem-
poral regions. Hence, we choose small dilation rates (i.e., d =
2, 3, 5) in this paper. The final localization sequence H for
temporal action region generation is subsequently fused with
H=H,+ i ZZ’:“I H,, where n, is the number of dilated con-
volution branches.

Cascaded Classification Module: This module aims to fur-
ther mine more relevant regions of target actions. Although the
dilated convolution can be used to expand the initially discrimi-
native regions to be more integral, it fails to locate other regions
of interest that do not appear in the initial localization sequence.
To further promote the quality of the CAS, we adopt a cascaded
mechanism with the Online Adversarial Erasing (OAE) step to
enforce two classification network of the same architecture to
locate different but complementary regions of target actions.

In the first stage, the dilated convolution module handles the
video feature sequence as the input to generate the localization
sequence H. Then, we apply a threshold on H to generate a
mask, which represents the discriminative regions detected by
the first classifier. Next, we use this mask to erase the input
video feature maps from the video sequence, which is subse-
quently fed into the second stage. Thus, the second classifier
with the erased-input-feature maps is forced to discover other
action-related regions to support the video-level class labels.
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Fig. 4. Illustration of the comparison of ground-truth temporal intervals, sim-
ple T-CAS, multi-dilated T-CAS, cascade mining T-CAS and knowledge transfer
enhanced T-CAS for the LongJump action class.

Concretely, the second classifier will generate a new initial seed
and use dilated convolution to expand it. Finally, we integrate the
two generated Temporal Class Activation Sequences (T-CASs),
H and H to form the cascaded localization sequence HY (Cas)
= max{H¥, H}}, where H¥(Cas) indicates the ¢-th element
in the cascaded localization sequence of class k.

Boundary Regression Module: The goal of this module is
to learn to directly predict the segment boundary based on the
enhanced CAS obtained above. The multi-anchor mechanism
has shown great effectiveness in the fully supervised temporal
action detection task, which generates the detections by con-
stantly regressing the predefined multi-scale anchors at each
temporal position, including the center location and temporal
length. However, without temporal annotations for the weakly
supervised counterpart, it is vital to leverage other priors to pro-
vide segment-level supervision. Based on the idea in [33], we
employ the Outer-Inner-Contrastive (OIC) loss to optimize the
predictor. The boundary prediction procedure is illustrated in
Fig. 3.

Specifically, given the encoded video features as the input,
a boundary predictor first stacks three same temporal convolu-
tional layers to handle the temporal information. Each temporal
convolutional layer has the same configurations: 128 filters, ker-
nel size 3, and stride 1 with ReLu activation. Then, another tem-
poral convolutional layer with 2/ filters, kernel size 3 and stride
1 is employed to predict the boundary regression values p,. and
Dy for each position, where M is the number of anchor scales.
For anchor generation, we denote ¢,, and ¢,, as the temporal po-
sition and temporal length of each anchor in the output feature
maps, and each cell of output feature maps in the prediction
layer is associated with multi-scale anchors. Then, for each an-
chor at location ¢,,, we use the output regression values to adjust
the segment, where the center localization is 7, = ¢, + ty - P,
and the temporal length is r,, = t,, - exp(p,); hence, the pre-
dicted inner boundary can be computed by s = r, — r,,/2 and
€ =71y + ry /2. Then, to implement the OIC loss, we inflate
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the inner boundary by a ratio «y to obtain the outer boundary
S=s—ry-yand E=e+ry 7.

The OIC loss is introduced to measure how likely the anchor
covers the actions and subsequently discard the negative seg-
ments. Concretely, it can be denoted as the average activations
of the outer red area minus the average activations of the inner
green area among the enhanced CAS obtained previously.

D. Transfer Learning Mechanism

Transfer learning technology has been widely explored in
modeling the shifts of data distributions across different do-
mains [34], [35]. The performance of video encoders pretrained
on trimmed videos is bound to decrease on untrimmed videos
due to the great amount of background noise, which greatly af-
fects the quality of the CAS. To promote the classification perfor-
mance of untrimmed videos and make full use of the large-scale
trimmed video datasets, we introduce the transfer learning mech-
anism to learn transferable knowledge between trimmed videos
and untrimmed videos. Since the trimmed videos are precisely
annotated with the action of interest, decisive clues in high layers
(¢.e., the classification layer) can be utilized for action recogni-
tion even in untrimmed videos. As shown in Fig. 1, we take the
trimmed branch as the source branch and the untrimmed branch
as the target branch. Then, we mine informative knowledge from
the trimmed videos to improve the performance on untrimmed
videos via knowledge transfer.

For the trimmed branch, we use settings identical to those for
the untrimmed one. Specifically, trimmed videos are also fed into
the two-stream network for feature extraction; then, the visual
feature sequence serves as the input of our framework. Unlike
the untrimmed branch, since the trimmed videos are well seg-
mented, the boundary regression module is no longer necessary.
As a result, the trimmed branch is trained by minimizing the
classification loss on the trimmed video dataset the same as for
the untrimmed branch. After the trimmed branch converges, we
extract the output features in the GAP layer of the classification
stage as decisive knowledge to be fed into the knowledge trans-
fer module. Then, we utilize the Maximum Mean Discrepancy
(MMD) [36] to measure the distance of the output distribution
of the two branches. Then, an instructive clue is leveraged from
the trimmed branch for the untrimmed branch to improve the
overall performance.

E. Integrated Training

The multi-dilated convolution module with the cascaded clas-
sification module is designed to improve the quality of the Class
Activation Sequence (CAS). Meanwhile, the boundary regres-
sion module is proposed to perform boundary prediction on the
CAS, which is more robust to noise. In addition, with the pro-
vided trimmed videos, the knowledge transfer module further
boosts the classification performance on untrimmed videos by
leveraging the decisive information from trimmed videos. To
promote the quality of the CAS greatly and predict the accurate
boundaries efficiently, we adopt a multi-task learning approach
to jointly train these modules, where the loss functions of three
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parts are combined in an end-to-end framework. The training
details of our algorithm are introduced in this section.

Training Data Construction: As described in Section III.
B, for a given video X,, we form the unit sequence U and
extract the corresponding feature sequence F with length
ly. Then, we try three sampling strategies to simplify the
input feature sequence for computational cost reduction and
long-range video modeling, including uniform sampling, sparse
sampling [21] and shot-based sampling [37]. We adopt the
sparse sampling during training, which achieves the optimal
performance. We think that this is mainly because the sparse
sampling method can improve the long-range modeling ca-
pability; meanwhile, it randomly selects a snippet from K
segments each to form the feature sequence during the training
phase, which can be regarded as a data augmentation strategy
to increase the feature diversity. After sampling, we construct
the training data of each pair of untrimmed and trimmed
videos as ©,,;; and ., with the same action category,
where ©(X,) = {U'(X,),F (X,), ¥, }. Finally, each pair of
O . ntri and Oy, is separately fed into the two branches for our
algorithm implementations.

Loss of the Cascaded Dilated Classification Block: Taking
a video feature sequence as the input, the multi-dilated convo-
lution module utilizes multiple convolutional kernels with var-
ied dilation rates to perform video classification, while the cas-
caded classification module adopts the online adversarial erasing
method to combine the same two classifiers with different input
video features for entire region mining in a cascaded manner.
The standard multi-label sigmoid cross-entropy loss function is
computed on video-level action labels to concurrently train the
two cascaded classifiers, which can be defined as:

Nirain
1
Lejass = 7109()’1()‘1,“))7 ey
Ntrain v—1
(2.) _ 1 (To) ;
wherey, "’ = [Ev—— I andy,,. ", is the predicted class

score of action label ¥, for video v.

For the online adversarial erasing mechanism, we also test dif-
ferent erasing thresholds &, from 0.6 to 0.9, and the evaluation
results are shown in Section IV.

Loss of the Boundary Regression Module: As shown in
the bottom-right of Fig. 1, we can compute the OIC loss for
each anchor attached to the output feature maps. As described
before, each predicted anchor consists of the inner boundary
[s, ], inflated outer boundary [S, E] and action category k. We
denote the class activation at position ¢ in the CAS of action k
as ay(t). Hence, the OIC loss of the prediction 7 can be defined
as the average activation A, (7) of the outer area (i.e., [S, s] and
[e, E]) minus the average activation A;(7) of the inner area (i.e.,

[s,€]):
Lorc = Ao(1) — Ai(T)

C Jia@dt— [Fax@®)dt [ an(t)dt o
C(s=S+1)—(E—-e+1) (e—s+1)

During training, we only consider the CAS of the ground-truth
action category 1. If the activation ay, (¢) at position ¢ in the CAS

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 22,2021 at 08:51:12 UTC from IEEE Xplore. Restrictions apply.



SU et al.: TRANSFERABLE KNOWLEDGE-BASED MULTI-GRANULARITY FUSION NETWORK

is less than 0.1, we discard all anchors attached to this temporal
position. In addition, among the M anchors of each remaining
temporal position, we only keep the one with the lowest OIC
loss, which indicates the most likely scale to contain an action
instance. Then, the kept anchors with OIC loss greater than —0.3
are further removed. Finally, we conduct Soft Non-Maximum
Suppression (Soft-NMS) [38] on the remaining anchors with
predefined overlap IoU threshold 6y 5. The total loss of the
boundary regression module is the summation of the OIC losses
of all kept anchors. With the OIC loss, the optimization process
will encourage the higher activation in the inner area but the
lower activation in the outer area.

Loss of the Knowledge Transfer Module: The loss function
of the knowledge transfer module can be defined as the squared
Maximum Mean Discrepancy (MMD) loss [36]:

Lgr = Lpc = MM D?*(T, U)
1 Nr Nr 1 Ny Ny
=z ST Tkt ty) + ~ SO k(ug,uy)
T j=1 j=1 U i=1j=1
Nt Ny

_ﬁZZk(ti,uj), 3)

i=1 j=1

where Np and Ny indicate the number of trimmed and
untrimmed videos with the same class, respectively. t and u in-
dicate the video-level representation before a Fully Connected
(FC) layer of trimmed and untrimmed videos, respectively, in the
classification network. k denotes the Gaussian kernel function.

Objective for Training: The training objective of the
transferable-knowledge-based multi-granularity fusion network
is to solve a multi-task optimization problem. The overall loss
function is a weighted sum of the classification 10ss (L¢jqss),
boundary regression loss (Lo ¢, knowledge transfer loss (L i 1)
and L5 loss for regularization:

L:Lclass+a'LOlc+6'LKT+)"HE||§7 (4)

where «, 5 and A are the weight terms for balancing the loss
functions of multiple tasks. L.;,ss is the classification loss in
the two-stage cascaded classification module. « is set to 10, 3
is set to 10, and A is set to 0.0001 by empirical validation. = is
the unified model.

F. Inference During Prediction

During prediction, using the enhanced CAS and boundary
predictor, we can obtain the detections with entire regions and
accurate boundaries in three steps:

1) First, we derive the CAS of the augmented classification
network based on the idea of [9] and subsequently combine
the CASs of multiple dilated branches and two cascaded
stages to obtain the enhanced CAS.

2) Then, we perform boundary prediction on the generated
CAS and obtain the confidence score of each kept detec-
tion by fusing the OIC score, mean activation score and
classification score.

3) Finally, we conduct the postprocessing step to suppress
redundant detections based on their confidence scores.
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Boundary Prediction: To implement boundary prediction on
the CAS, first, we derive the CAS of the augmented classifica-
tion network including the multi-dilated convolution module and
cascaded classification module. During prediction, we adopt the
uniform sampling method to sample the input video feature se-
quence for time saving and stable results and consider the CAS
of all action categories to perform boundary regression and ob-
tain the class-specific segment prediction results that satisfy the
conditions as described in the training procedure.

Score Fusion: After the boundary prediction, we can obtain
the prediction set I' = {Tn}ivil, where N, is the number of
candidate detections. To obtain the confidence score of each
prediction for retrieval, we adopt the score fusion of three parts
for a reliable evaluation: mean activation score, Outer-Inner-
Contrastive (OIC) score and classification score. Specifically,
denoting prediction 7 as [ts¢art, tend), we first calculate the mean
activation score among the temporal range of the detection as

Pact:

1 tend 1

s k _
tend - tstart +1 Z Ht (CGS) t

Pact = P EEEE——
e end — tstart +1

t=tstart

R
<maX{Ho+ndZHi7Ho+ndZHi}>7

i=1 i=1

tend

>

t=tstart

Q)
and denote the OIC score p,;. of 7 as 1 minus its OIC loss; then,
we obtain the confidence score pcon s by fusing pyci, Poic and
Deis With multiplication:

Pconf = Pact * Poic * Pclass- (6)

Redundant Detection Suppression: Since our algorithm
generates detections based on densely distributed anchors, the
candidate predictions may overlap with each other to different
degrees. To suppress redundant detections and improve the re-
call, we conduct the Soft-NMS [38] method, which suppresses
redundant detections using a Gaussian decaying score function
to re-rank the prediction set:

Pconf,n, 10U (Tm7 Tn) < 07

p /con f= (7)

_iou(tm,mn)?

Pconfmn * € € ) wou (TmaTn) > 97

where 7, is the prediction with the maximum score, € is a
parameter of the Gaussian function, and 6 is the predefined
threshold. After postprocessing, we obtain the final prediction

U ! ! N, !
setI' = {Tn = {t?tarﬁ tgnd7 pconf,n’ k"}}nil’ where Np isthe
number of final predictions.

IV. EXPERIMENTS

A. Datasets and Setup

Datasets: ActivityNet-1.3 [39] is a large-scale video dataset
for action recognition and temporal action detection tasks used in
the ActivityNet Challenge 2016, 2017 and 2018, which contains
19994 videos and is divided into training, validation and testing
subsets at a ratio of 2:1:1, with 200 action classes annotated.
Each video is annotated with 1.5 temporal action instances on
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average. The THUMOS14 [40] dataset uses the UCF-101 [41]
dataset as the training set, which includes 13320 trimmed videos
for the action recognition task, and contains 1010 untrimmed
videos for validation and 1574 untrimmed videos for testing with
video-level labels of 101 action classes, while only a subset of
200 videos in the validation set and 213 videos in the testing set
are temporally annotated among 20 classes.

We train our model with the validation subset without using
the temporal annotations and trimmed videos in the UCF-101
dataset of the same 20 classes among the 101 classes for knowl-
edge transfer. For the ActivityNet-1.3 dataset, we observe that
there are 30 classes that belong to the same classes among the two
datasets. Therefore, we also adopt the corresponding trimmed
videos for knowledge transfer.

In this section, we compare our method with state-of-the-art
methods on both ActivityNet-1.3 and THUMOS14. Exploration
studies are performed on THUMOS 14.

Evaluation metrics: Following the conventions, we use the
mean Average Precision (mAP) as the evaluation metric, where
the Average Precision (AP) is separately calculated on each
class. We report the mAP values at different Intersection over
the Union (IoU) thresholds. On ActivityNet-1.3, mAPs with
IoU thresholds of {0.5,0.75,0.95} and average mAPs with IoU
thresholds set at {0.5 : 0.05 : 0.95} are used. On THUMOS 14,
mAPs with ToU thresholds of {0.1,0.2,0.3,0.4,0.5} are used.

Implementation Details: For visual feature encoding, we
adopt the two-stream networks with the architecture described
in [31], where the ResNet network [42] is the spatial network,
and the BN-Inception network [43] is the temporal network. For
the RGB stream, we perform a center crop of size 224 x224; for
the optical stream, we utilize the TV-L1 optical flow algorithm.
During feature extraction, the inputs to the two-stream network
are stacks of unit frames n,, sampled at 30 fps. n,, is set to 16
on both datasets. The two-stream network is implemented using
Caffe [44].

In KT-MGEFN, since the duration of videos on the ActivityNet-
1.3 dataset is limited, we rescale the feature sequence of each
input video to a fixed length window [,, = 256 by linear interpo-
lation as in our previous work [6], [45]. We train our KT-MGFN
with the multi-task objective using the Adam optimizer, and the
implementations are based on PyTorch. On both datasets, the
batch size is set to 16, and the learning rate is set to 0.001 for 30
epochs without optimization of the boundary regression module
and then to 0.0001 for another 70 epochs with overall optimiza-
tion. The erasing threshold &.,., in the cascaded classification
module is set to 0.8, and the dilation rates d in the multiple di-
lated convolution branches are 1, 2, 3 and 5. For IoU threshold
On v s in Soft-NMS, we set 6y ass to 0.4 on ActivityNet-1.3 and
0.5 on THUMOS 14 based on empirical validation. € in the Gaus-
sian function is set to 0.75. We choose anchors of snippet-level
length 1, 2, 4, 8, 16, and 32 for the THUMOS 14 dataset and 4,
8, 16, 32, 64, and 128 for the ActivityNet-1.3 dataset.

B. Comparison with State-of-the-Art Methods

Action Recognition: We first evaluate the video classifica-
tion performance on untrimmed videos and compare the results
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TABLE I
COMPARISON RESULTS OF THE CLASSIFICATION ACCURACY (%) ON THE
THUMOS 14 DATASET. NOTE THAT MGFN IS A SIMPLER VERSION OF
KT-MGFN, WHICH EXCLUDES THE KNOWLEDGE TRANSFER MODULE

Supervision Method RGB Optical Flow Fusion
iDT+FV [18] - - 63.1
Strong TSN (3 seg) [21] - - 78.5
Two-Stream 68.2 71.6 73
UntrimmedNets [31] - - 82.2
Weak MGFN 79.3 80.1 85.4
KT-MGFEN 79.9 80.7 86.0

TABLE 1T

COMPARISON RESULTS OF THE CLASSIFICATION ACCURACY (%) ON THE
ACTIVITYNET-1.3 DATASET. NOTE THAT MGFN IS A SIMPLER VERSION OF
KT-MGFN, WHICH EXCLUDES THE KNOWLEDGE TRANSFER MODULE

Method RGB Optical Flow Fusion
Two-Stream [46] 71.1 73.5 79.2
MGFN 78.2 80.7 85.6
KT-MGFN 79.6 82.3 88.1

with other state-of-the-art methods. Table I illustrates the evalu-
ation results on the THUMOS 14 dataset, which show that with
our augmented classification network and knowledge transfer
module, our method can achieve a better performance than the
existing methods. Table IT illustrates the classification results on
the ActivityNet-1.3 dataset.

Action Detection: Then, we evaluate the action detection
performance of our method under weak supervision and com-
pare the results with other state-of-the-art approaches in both
fully supervised and weakly supervised manners. Table III il-
lustrates the results on the THUMOS14 dataset. We observe
that our method significantly outperforms other existing weakly
supervised methods and is even competitive with some fully su-
pervised approaches. The detection performance of our MGFN
without the knowledge transfer module demonstrates that our
augmented classification network can generate a higher-quality
CAS than AutoLoc [33], and the end-to-end training approach
contributes to the improvement, which will be discussed in
Section VI.C. Compared to the methods proposed in [10], the
mAP of our method under ¢t/oU = 0.5 is nearly two times
higher, which confirms that our Online Adversarial Erasing
(OAE) mechanism is more effective and intuitive. The compari-
son results for the ActivityNet-1.3 dataset in Table IV also show
the superiority and generalizability of our method. For better
comparison, we list the per-class Average Precision of several
fully supervised methods under ¢JoU = 0.5, which show that
our weakly supervised temporal action detector can also achieve
competitive performance with fully supervised methods even
with weak labels.

C. Exploration Study

Architecture of KT-MGFN: We first conduct ablation stud-
ies on the THUMOS 14 dataset to investigate the contribution of
each module introduced in this paper. As shown in Table V,
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TABLE III
COMPARISON OF OUR METHOD WITH STATE-OF-THE-ART METHODS ON THE THUMOS 14 DATASET FOR ACTION DETECTION, INCLUDING BOTH STRONG
SUPERVISION AND WEAK SUPERVISION. UNTF AND I3DF ARE ABBREVIATIONS FOR THE UNTRIMMEDNET FEATURES AND 13D FEATURES, RESPECTIVELY

mAP@tloU («)

Supervision Method Feature 01 02 03 0.4 05 0.6 07
Oneata et al. [47] - 36.6 33.6 27.0 20.8 14.4 - -
Richard et al. [48] - 39.7 35.7 30.0 23.2 15.2 - -
Strong  Shou et al. [2] - 47.7 435 36.3 28.7 19.0 10.3 53
Yuan et al. [49] - 51.0 452 36.5 27.8 17.8 - -
Lin et al. [4] - 50.1 47.8 43.0 35.0 24.6 15.3 7.7
Zhao et al. [3] - 60.3 56.2 50.6 40.8 29.1 - -
Gao et al. [5] - 60.1 56.7 50.1 413 31.0 19.1 9.9
Singh et al. [10] - 36.4 27.8 19.5 12.7 6.8 - -
Wang et al. [31] UNTF 44.4 37.7 28.2 21.1 13.7 - -
Nguyen et al. [12] UNTF 453 38.8 31.1 23.5 16.2 9.8 5.1
Su et al. [45] UNTF 47.1 41.6 32.8 24.7 16.1 10.1 5.5
Weak  Sujoy et al. [32] UNTF 49.0 42.8 32.0 26.0 18.8 - 6.2
Sujoy et al. [32] I3DF 53.7 48.5 39.2 29.9 22.0 - 7.3
Shou et al. [33] UNTF 46.4 41.5 35.8 29.0 21.2 13.4 5.8
KT-MGEN (Ours) UNTF 52.3 46.6 39.0 30.7 22.7 13.6 59
KT-MGEFN (Ours) I3DF 56.5 51.3 42.2 33.8 25.6 17.0 7.5
TABLE IV

COMPARISON RESULTS ON THE VALIDATION SET OF ACTIVITYNET-1.3 IN TERMS OF MAP@T7/0U AND AVERAGE MAP

Supervision Method 0.5 0.75 0.95 Average

Singh et al. [46] 34.5 - - -
Heilbron et al. [50] 40.00 17.90 4.70 21.70

Strong Wang et al. [51] 42.28 3.76 0.05 14.85
Shou et al. [52] 43.83 25.88 0.21 22.77
Xiong et al. [53] 39.12 23.48 5.49 23.98
Lin et al. [54] 48.99 3291 7.87 32.26
Su et al. [45] 39.29 24.09 6.71 24.42
Nguyen et al. [12] 29.3 16.9 2.6 -

Weak Liu et al. [55] 34.0 20.9 5.7 212
KT-MGEFEN (Ours) 39.89 24.56 7.30 24.75

TABLE V Dilation Rate: The dilation rate d in the multi-dilated con-

ABLATION STUDIES WITH RESPECT TO ARCHITECTURE CHOICES ON
THUMOS 14. v' DENOTES THAT THE SETTING OF THE CORRESPONDING
COLUMN Is EMPLOYED. OTHERWISE, THE SIMPLE CAS GENERATED WITHOUT
THE MULTI-DILATED CONVOLUTION MODULE (MDCM), CASCADED
CLASSIFICATION MODULE (CCM), KNOWLEDGE TRANSFER MODULE (KTM),
AND BOUNDARY REGRESSION MODULE (BRM) Is ADOPTED

Model MDCM CCM KTM BRM mAP (a =0.5)
13.8
v 15.4
KT-MGEN v v 17.3
v v v 18.2
v v v v 22.7

the original Class Activation Sequence (CAS) generated by
the simple classification network is chosen as the baseline of
our work. The multi-dilated convolution module and cascaded
classification module augment the classification network to gen-
erate a high-quality CAS, which promotes the localization per-
formance. The knowledge transfer module further boosts the
performance with the considered informative information. Fi-
nally, using the boundary regression module, accurate bound-
aries can be obtained. These observations reveal that each mod-
ule of our KT-MGFN is effective and indispensable.

volution module is used to augment the simple classification
network by enlarging the receptive field. Previous work in [30]
shows that convolutional kernels with varying dilation rates can
transfer the discriminative knowledge of sparsely highlighted
regions to other object regions. In this manner, the discrimina-
tiveness of other surrounding object-related regions that have
not been discovered can be effectively enhanced. However, a
convolutional kernel with a large dilation rate can also intro-
duce irrelevant regions, so we only use smaller dilation rates in
this paper (i.e., d = 2, 3, 5). In addition, even with smaller di-
lation rates, some irrelevant regions can still be misrecognized,
i.e., true negative regions. True negative regions usually show
diversity under different dilations, while true positive shows con-
sistency in different localization maps of multiple dilated con-
volution branches. Therefore, we employ a fusion strategy to
remove noise by averaging multiple class activation sequences.
The evaluation results of different dilations are illustrated in
Fig. 5.

Erasing Threshold: The erasing threshold £, mentioned in
the online adversarial erasing step of the cascaded classification
module is used to dynamically mask out the extracted features
of discriminative regions discovered by the first-stage classi-
fier, which forces the second-stage classifier to leverage other
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Fig. 5. Evaluation results of different dilation rates in the multi-dilated con-
volution module.
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Fig. 6. Evaluation results of different erasing thresholds in the cascaded clas-
sification module.

TABLE VI
STUDY OF THE NUMBER OF CLASSIFIERS OF KT-MGFN USED TO GENERATE
THE CAS ON THE THUMOS 14 DATASET IN TERMS OF mAP@ 1/0U

Method 01 02 03 04 05 06 07
KT-MGFN(one) 48.6 424 333 235 186 92 5.1
KT-MGFN(three) 49.2 435 36.1 26.8 199 11.1 54
KT-MGFN(two) 52.3 46.6 39.0 30.7 22.7 13.6 5.9

supportive regions for classification. Hence, the generated CAS
can locate relatively complete regions of target actions. How-
ever, & 1S a hyperparameter, which can affect the results to
varying degrees for different settings. Concretely, a larger &,
would fail to discover more useful information since fewer re-
gions are effectively erased, while a smaller &..,-, would decrease
the performance due to the introduced background information.
In this paper, we test ..., from 0.6 to 0.9 and find that when
&era = 0.8, our method achieves the best performance over dif-
ferent toU. The evaluation results are shown in Fig. 6.
Cascaded Classifiers: In the cascaded classification module,
we perform an ablation study on the number of classifiers. The
experimental results are shown in Table VI. The comparison
results suggest that there is no significant improvement in the
localization performance of KT-MGFN with three classifiers.
Therefore, adding the third stage is not necessary, and two stages
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TABLE VII
PERFORMANCE COMPARISONS OF STAGE-WISE TRAINING AND END-TO-END
TRAINING ON THE THUMOS 14 DATASET

Stage-wise End-to-end
mAP (o = 0.5) 21.8 22.7
TABLE VIII

STUDY OF THE CONTRIBUTIONS OF EACH COMPONENT TO SCORE FUSION ON
THE THUMOS 14 DATASET. v INDICATES THAT THE CORRESPONDING SCORE
IS EMPLOYED FOR FUSION

Pact \/ v \/ \/
DPclass v v v v
Poic v v \/ \/
mAP (a = 0.5) 194 20.6 21.8 21.7 224 222 22.7

TABLE IX
PER-CLASS AVERAGE PRECISION (AP) AT THE I0U THRESHOLD OF 0.5 ON THE
THUMOS 14 DATASET (%). NOTE THAT ALL COMPARED METHODS
ARE FULLY SUPERVISED

Action [2] [4] [56] [57] Ours
Baseball Pitch 149 293 19.3 26.1 14.1
Basketball Dunk 201 92 385 54.0 12.3
Billiards 7.6 4.7 4.6 8.3 7.7

Clean and Jerk 248 356 54.1 27.9 21.0
Cliff Diving 275 46.1 63.9 49.2 27.6
Cricket Bowling 15.7  10.0 15.1 30.6 12.4
Cricket Shot 138 19 10.3 10.9 8.2

Diving 176 176 269 26.2 21.1
Frisbee Catch 15.3 6.6 22.0 20.1 7.9

Golf Swing 182 133 20.5 16.1 25.2
Hammer Throw 19.1 51.6 41.6 43.2 38.2
High Jump 200 216 220 30.9 22.1
Javelin Throw 182 427 52.0 47.0 423
Long Jump 348 713 71.7 57.4 70.5
Pole Vault 321 581 48.9 42.7 47.0
Shotput 121 21.8 16.0 19.4 11.2
Soccer Penalty 19.2 133 26.4 15.8 17.2
Tennis Swing 193 88 12.3 16.6 7.6

Throw Discus 244 248 7.4 29.2 40.3
Volleyball Spiking 4.6 39 10.8 5.6 10.1
mAP@0.5 190 246 292 28.9 227

are usually sufficient for locating the integral temporal action
intervals.

Network Training Pattern: Stage-wise vs. End-to-end.
KT-MGFN is designed to jointly optimize the augmented clas-
sification network and boundary regressor. It is also possible
to separately train the augmented classification network and
boundary regressor, in which they do not collaborate with each
other. Such a training scheme is called stage-wise training. Ta-
ble VII illustrates a comparison between these two approaches,
from which we observe that the unified training approach can
outperform stage-wise training with identical settings. This
result clearly demonstrates the importance of jointly optimizing
the augmented classification network and boundary regressor.

Score Fusion for Retrieval: We evaluate the score fusion
with different combinations of classification score p.;,ss, acti-
vation score p,.; and OIC score p,;.. The evaluation results are
shown in Table VIII, which suggest that using the classifica-
tion score pejqss, activation score py.+ or OIC score py;. alone
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Fig. 7. Qualitative examples generated by KT-MGFN on the THUMOS 14 dataset (top two rows) and ActivityNet-1.3 dataset (bottom row).
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Fig. 8. Qualitative examples of low-quality detections generated by KT-MGEN on the THUMOS 14 dataset.
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is worse than combining two of them, and by fusing the three
scores together, we can obtain the best performance.

D. Qualitative Analysis

As shown in Fig. 7, we visualize the localization performance
of three examples predicted by our methods on the THUMOS 14
and ActivityNet-1.3 datasets. In Fig. 7(a), the given video con-
tains two ground truth action instances with different classes,
and our method can generate the class-specific detections. In
Fig. 7(b), a video of the HammerThrow action is densely an-
notated, where the durations of action instances greatly vary.
However, our method can generate dense detections to cover the
ground truths as complete as possible. In Fig. 7(c), the dura-
tion of the LongJump action instance almost occupies the entire
video, but our method is sufficiently robust to discover the most
discriminative regions even with some missing areas.

We also illustrate some low-quality prediction examples of
our method on the THUMOS14 dataset in Fig. 8. In Fig. 8(a),
there is a potential action instance with the SoccerPenalty class
that our method failed to detect, and the reason may be ascribed
to the similar appearance and little dynamic motions along the
temporal dimension. In Fig. 8(b) and Fig. 8(c), our method gen-
erates detections of the LongJump and GolfSwing classes, while
there is no corresponding ground truth in the video. A possible
reason is that the annotator failed to segment them. From these
examples, we conclude that our method can be well generalized
to different scenarios and generate high-quality detections with
high recall.

V. CONCLUSION

In this paper, we propose a unified network for weakly su-
pervised temporal action detection. Our method can generate a
high-quality Class Activation Sequence (CAS) by augmenting
the simple classification network with the cascaded dilated
convolution block, where the multi-dilated convolution module
employs convolutional kernels with varying dilation rates for
local discriminative region expansion, while the cascaded
classification module adapts two cascaded classifiers for en-
tire region mining. In addition, to improve the classification
performance on untrimmed videos, informative knowledge has
been transferred from trimmed videos to untrimmed videos
with a knowledge transfer module. Finally, a boundary re-
gression module is adopted to perform boundary prediction
on the enhanced CAS. Experiments conducted on the THU-
MOS14 dataset and ActivityNet-1.3 dataset demonstrate the
effectiveness of our approach.
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